Celiac disease – Virus linked to food sensitivity

Celiac disease is a digestive disorder that’s triggered by eating foods containing gluten—a protein common in foods such as bread, pasta, cookies, and cakes. When a person with celiac disease eats or drinks anything with gluten, the body’s immune system attacks the inside of the small intestine. The damage from this attack keeps the body from absorbing needed nutrients. If left untreated, celiac disease can lead to malnutrition, anemia, weakened bones, and other problems.

Researchers don’t know exactly what triggers celiac disease. Certain genes and other factors, such as things in the environment, can lead to celiac disease. Viral infections have been suggested as a possible trigger.

A team led by Dr. Bana Jabri at the University of Chicago and Dr. Terence S. Dermody at the University of Pittsburgh School of Medicine investigated whether a common but harmless type of virus that people are frequently exposed to, called reoviruses, can prompt sensitivity to dietary proteins. The study was supported by NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and National Institute of Allergy and Infectious Diseases (NIAID), among others. Results were published in Science on April 7, 2017. Continue reading

Childhood Acute Lymphoblastic Leukemia Treatment

Childhood Acute Lymphoblastic Leukemia (ALL) is a type of cancer in which the bone marrow makes too many immature lymphocytes (a type of white blood cell). Therefore, Childhood acute lymphoblastic leukemia (also called ALL or acute lymphocytic leukemia) is a cancer of the blood and bone marrow. Unfortunately, ALL is the most common type of cancer in children, and it usually gets worse quickly if it is not treated.

Anatomy of the bone; drawing shows spongy bone, red marrow, and yellow marrow. A cross section of the bone shows compact bone and blood vessels in the bone marrow. Also shown are red blood cells, white blood cells, platelets, and a blood stem cell.

Anatomy of the bone. The bone is made up of compact bone, spongy bone, and bone marrow. Compact bone makes up the outer layer of the bone. Spongy bone is found mostly at the ends of bones and contains red marrow. Bone marrow is found in the center of most bones and has many blood vessels. There are two types of bone marrow: red and yellow. Red marrow contains blood stem cells that can become red blood cells, white blood cells, or platelets. Yellow marrow is made mostly of fat. Continue reading

TCGA Study identifies Genomic features of Cervical Cancer

Investigators with The Cancer Genome Atlas (TCGA) Research Network have identified novel genomic and molecular characteristics of cervical cancer that will aid in the sub-classification of the disease and may help target therapies that are most appropriate for each patient. The new study, a comprehensive analysis of the genomes of 178 primary cervical cancers, found that over 70 percent of the tumors had genomic alterations in either one or both of two important cell signaling pathways. The researchers also found, unexpectedly, that a subset of tumors did not show evidence of human papillomavirus (HPV) infection. The study included authors from the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), both parts of the National Institutes of Health, and appeared January 23, 2017, in Nature.

Cervical cancer accounts for more than 500,000 new cases of cancer and more than 250,000 deaths each year worldwide. “The vast majority of cases of cervical cancer are caused by persistent infection with oncogenic types of HPV. Effective preventive vaccines against the most oncogenic forms of HPV have been available for a number of years, with vaccination having the long-term potential to reduce the number of cases of cervical cancer,” said NCI Acting Director Douglas Lowy, M.D.

“However, most women who will develop cervical cancer in the next couple of decades are already beyond the recommended age for vaccination and will not be protected by the vaccine,” noted Dr. Lowy. “Therefore, cervical cancer is still a disease in need of effective therapies, and this latest TCGA analysis could help advance efforts to find drugs that target important elements of cervical cancer genomes in addition to the HPV genes.” Continue reading

Cellular Immunotherapy targets a common Human Cancer mutation

In a study of an immune therapy for colorectal cancer that involved a single patient, a team of researchers at the National Cancer Institute (NCI) identified a method for targeting the cancer-causing protein produced by a mutant form of the KRAS gene. This targeted immunotherapy led to cancer regression in the patient in the study. The finding appeared Dec. 8, 2016, in the New England Journal of Medicine. The study was led by Steven A. Rosenberg, M.D., Ph.D., chief of the Surgery Branch at NCI’s Center for Cancer Research, and was conducted at the NIH Clinical Center. NCI is part of the National Institutes of Health (NIH).

More than 30 percent of all human cancers are driven by mutations in a family of genes known collectively as RAS, which has three members: KRAS, NRAS, and HRAS. Mutations in the KRAS gene are thought to drive 95 percent of all pancreatic cancers and 45 percent of all colorectal cancers. A mutation called G12D is the most common KRAS mutation and is estimated to occur in more than 50,000 new cases of cancer in the United States each year. Because of their importance in cancer causation, worldwide efforts to successfully target mutant RAS genes are being pursued. Such efforts have met with limited success to date.

In attempting to develop more effective approaches to targeting RAS, Rosenberg’s team isolated tumor infiltrating lymphocytes (TILs) that targeted the KRAS G12D mutation from tumor nodules in the patient’s lungs that developed after colorectal cancer cells had spread to the lungs. TILs are white blood cells that migrate from the bloodstream into a tumor. Continue reading

What Women Should Know About Essure Permanent Birth Control

The U.S. Food and Drug Administration (FDA) continues to advise women to carefully consider the benefits and risks associated with permanent birth control devices, like the FDA-approved Essure device, along with other birth control options.

That’s why FDA recently approved important labeling changes for Essure. Among other changes, Bayer, the company that makes Essure, will include a boxed warning and patient decision checklist in the labeling to help ensure that women receive and understand the benefits and risks of these permanent birth control devices.

What does this mean? Bayer’s new checklist in the patient information brochure summarizes key benefit and risk information about Essure. The checklist aims to encourage women to read the information brochure, understand Essure’s benefits and risks, and discuss the information with their doctor before making an informed decision on whether to use this device.

Here are some things to consider when choosing birth control. Continue reading